Integrals, Sums, and Limits in LaTeX: Complete Guide
Date Published

Integrals, Sums, and Limits in LaTeX
Master the notation for calculus and analysis in LaTeX.
Basic Integrals
Indefinite Integral
$\int f(x)\,dx$
Always include \, before dx for proper spacing.
Definite Integral
$\int_a^b f(x)\,dx$
Limits go in subscript and superscript.
Display Mode
In display mode, limits appear above and below:
$\displaystyle \int_0^\infty e^{-x}\,dx$
Multiple Integrals
Double Integral
$\iint_D f(x,y)\,dA$
Or with limits:
$\int_0^1 \int_0^1 f(x,y)\,dx\,dy$
Triple Integral
$\iiint_V f(x,y,z)\,dV$
Higher Integrals
$\idotsint f\,dx_1 \cdots dx_n$
Contour and Surface Integrals
Contour Integral
$\oint_C f(z)\,dz$
Surface Integral
$\oiint_S \vec{F} \cdot d\vec{A}$
Requires \usepackage{esint} for \oiint.
Summations
Basic Sum
$\sum_{i=1}^{n} a_i$
Display Mode
$\displaystyle \sum_{k=0}^{\infty} \frac{x^k}{k!}$
Double Sum
$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$
Products
Basic Product
$\prod_{i=1}^{n} a_i$
Factorial as Product
$n! = \prod_{k=1}^{n} k$
Limits
Basic Limit
$\lim_{x \to a} f(x)$
Limit at Infinity
$\lim_{n \to \infty} a_n$
One-Sided Limits
$\lim_{x \to 0^+} f(x)$ — right limit
$\lim_{x \to 0^-} f(x)$ — left limit
Limit Superior/Inferior
$\limsup_{n \to \infty} a_n$
$\liminf_{n \to \infty} a_n$
Common Formulas
Fundamental Theorem of Calculus
$\int_a^b f'(x)\,dx = f(b) - f(a)$
Geometric Series
$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$
Taylor Series
$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$
Euler's Formula
$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$
Gaussian Integral
$\int_{-\infty}^{\infty} e^{-x^2}\,dx = \sqrt{\pi}$
Styling Options
Inline vs Display Limits
Force display style limits inline:
$\sum\limits_{i=1}^n$
Force inline style limits in display:
$\displaystyle \sum\nolimits_{i=1}^n$
Multiple Conditions
$\sum_{\substack{i=1 \\ i \neq j}}^{n}$
Differential Operators
Derivatives
$\frac{d}{dx}$, $\frac{d^2}{dx^2}$
Partial Derivatives
$\frac{\partial f}{\partial x}$
$\frac{\partial^2 f}{\partial x \partial y}$
Spacing in Integrals
Use thin space before differentials:
$\int f(x)\,dx$ — correct
$\int f(x)dx$ — too tight
Write Calculus with Octree
Octree simplifies mathematical notation:
- Smart autocomplete for integrals - Preview complex formulas instantly - AI suggests proper notation - Export publication-ready PDFs
Try it at https://useoctree.com