Cube Root, Square Root, and Nth Root in LaTeX
Date Published

Roots in LaTeX
Writing roots in LaTeX is straightforward once you know the syntax.
Square Root
The basic square root:
$\sqrt{x}$
With expressions inside:
$\sqrt{a^2 + b^2}$
$\sqrt{\frac{a}{b}}$
Cube Root
For cube roots, use the optional argument:
$\sqrt[3]{x}$
The 3 goes in square brackets before the radicand.
Examples:
$\sqrt[3]{8} = 2$
$\sqrt[3]{a^3 + b^3}$
$\sqrt[3]{\frac{27}{8}}$
Nth Root
The same pattern works for any root:
$\sqrt[n]{x}$
Common examples:
Fourth root: $\sqrt[4]{16} = 2$
Fifth root: $\sqrt[5]{32}$
General: $\sqrt[n]{a^n} = a$
Nested Roots
Roots can be nested:
$\sqrt{\sqrt{x}}$
$\sqrt[3]{\sqrt{x}}$
$\sqrt{1 + \sqrt{1 + \sqrt{1 + x}}}$
Roots in Fractions
$\frac{1}{\sqrt{2}}$
$\frac{\sqrt{3}}{2}$
Rationalizing (Root in Denominator)
Often you'll rationalize:
$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
Roots with Exponents
Combine roots and powers:
$\sqrt{x^2} = |x|$
$\left(\sqrt{x}\right)^2 = x$
$\sqrt[3]{x^6} = x^2$
Fractional Exponents (Alternative)
Roots can be written as fractional exponents:
$\sqrt{x} = x^{1/2} = x^{\frac{1}{2}}$
$\sqrt[3]{x} = x^{1/3} = x^{\frac{1}{3}}$
$\sqrt[n]{x} = x^{1/n}$
Common Formulas with Roots
Quadratic Formula
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Distance Formula
$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
Standard Deviation
$\sigma = \sqrt{\frac{\sum(x_i - \mu)^2}{N}}$
Pythagorean Theorem
$c = \sqrt{a^2 + b^2}$
Styling the Radical
For a cleaner look with tall content, add spacing:
$\sqrt{\,\frac{a}{b}\,}$
The \, adds thin spaces inside.
Complex Numbers
Cube roots of unity:
$\omega = e^{2\pi i/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$
Write Root Expressions with Octree
Octree simplifies root notation:
- Smart autocomplete for \sqrt - Handles nested roots beautifully - Real-time preview of complex expressions - AI suggests proper formatting
Try it at https://useoctree.com